pado.math.calculate_psnr¶
- calculate_psnr(img1, img2, data_range=1.0)[source]¶
Calculate Peak Signal-to-Noise Ratio between multi-channel tensors.
- Parameters:
img1 (torch.Tensor) – First tensor [B, Channel, R, C]
img2 (torch.Tensor) – Second tensor [B, Channel, R, C]
data_range (float, optional) – The data range of the input image (e.g., 1.0 for normalized images, 255 for uint8 images). If None, uses the maximum value from images.
- Returns:
PSNR value in dB, infinity if images are identical
- Return type:
Examples
>>> intensity1 = light1.get_intensity() # [B, Channel, R, C] >>> intensity2 = light2.get_intensity() # [B, Channel, R, C] >>> psnr = calculate_psnr(intensity1, intensity2)